pysr3.lme.priors module
- class pysr3.lme.priors.GaussianPriorLME(fe_params: Dict, re_params: Dict)
Bases:
object
Implements Gaussian Prior for various models
Creates GaussianPrior
- Parameters:
fe_params (dict[str: tuple(float, float)]) –
- gaussian prior parameters for fixed effects. The format is {“name”: (mean, std), …}
E.g. {“intercept”: (0, 2), “time”: (1, 1)}
re_params (dict[str: tuple(float, float)]) – gaussian prior for variances of random effects. Same format as above.
- forget()
Releases all problem-dependent quantities
- Returns:
None
- gradient_beta(beta, *args, **kwargs)
Evaluates the gradient of the prior with respect to the vector of fixed effects
- Parameters:
beta (ndarray) – vector of fixed effects
- Returns:
gradient w.r.t. beta
- gradient_gamma(beta, gamma)
Evaluates the gradient of the prior with respect to the vector of random effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
gradient w.r.t. gamma
- hessian_beta(beta, gamma)
Evaluates Hessian of the prior with respect to the vector of fixed effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
Hessian w.r.t. (beta, beta)
- hessian_beta_gamma(beta, gamma)
Evaluates the mixed Hessian of the prior with respect to the vector of fixed and random effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
Hessian w.r.t. (beta, gamma)
- hessian_gamma(beta, gamma)
Evaluates Hessian of the prior with respect to the vector of random effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
Hessian w.r.t. (gamma, gamma)
- instantiate(problem: LMEProblem)
Instantiates a Gaussian prior with problem-dependent quantities
- Parameters:
problem (LMEProblem) – problem to fit
- Returns:
None
- loss(beta, gamma)
Value of the prior at beta, gamma.
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
value of the prior.
- class pysr3.lme.priors.NonInformativePriorLME
Bases:
Prior
Implements a non-informative prior
Creates NonInformativePrior
- forget()
Releases all problem-dependent values
- Returns:
None
- gradient_beta(beta, gamma)
Evaluates the gradient of the prior with respect to the vector of fixed effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
gradient w.r.t. beta
- gradient_gamma(beta, gamma)
Evaluates the gradient of the prior with respect to the vector of random effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
gradient w.r.t. gamma
- hessian_beta(beta, gamma)
Evaluates Hessian of the prior with respect to the vector of fixed effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
Hessian w.r.t. (beta, beta)
- hessian_beta_gamma(beta, gamma)
Evaluates the mixed Hessian of the prior with respect to the vector of fixed and random effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
Hessian w.r.t. (beta, gamma)
- hessian_gamma(beta, gamma)
Evaluates Hessian of the prior with respect to the vector of random effects
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
Hessian w.r.t. (gamma, gamma)
- instantiate(problem)
Instantiates the prior based on the problem
- Parameters:
problem (LMEProblem)
- Returns:
None
- loss(beta, gamma)
Value of the prior at beta, gamma.
- Parameters:
beta (ndarray) – vector of fixed effects
gamma (ndarray) – vector of random effects
- Returns:
value of the prior.